OPTIMIZATION OF THE LATTICE

FOR INTRABEAM SCATTERING

FOR

SHORT BUNCHES OPERATION MODE

(90° PHASE ADVANCE CELL)

A.G. Ruggiero

(BNL, November 21, 1983)

Same procedure as in RHIC-6
Same beam bunch parameters
This time we assume a regular FODO cell
with 90° phase advance.

For the quadripole gradient B'

$$\frac{B'\ell_{\alpha}}{B\varrho} L = \sqrt{2}$$
 (1)

He symbols here and in the Jollowing having the same meaning as in RHic-6.
Also

$$\beta_{\text{max}} = (2+\sqrt{2}) L$$

$$\beta_{\text{min}} = (2-\sqrt{2}) L$$
(2)

$$\mathcal{I}_{\text{max}} = (2 + 1/\sqrt{2}) L \theta$$

$$\mathcal{I}_{\text{min}} = (2 - 1/\sqrt{2}) L \theta$$
(3)

with the average values

$$\frac{\vec{\beta}}{\eta} = 2 L \qquad (4)$$

$$= 2 L \theta \qquad (5)$$

As in RHIC-6, ble number of half-cells is $N = 2\pi R_0 / L \qquad (R_0 = 381.2325 \, \mathrm{m})$ and the bending angle yer half regular cell $\theta = 2\pi / N$

Herefore eq.(5) can be replaced with $\bar{\eta} = 2 \frac{L^2}{R_0}$ (6)

The results, as in RHic-6, are given in the Table at the end of the paper.

In this table we have marked with a star our choice which corresponds to a luminosity lifetime well in excess of one hour and a full cell length

2L = 30 m

For this cell length

 $\beta_{\text{max}} = 51 \text{ m}$ $\gamma_{\text{max}} = 4.6 \text{ m}$

Also

N = 160 $\theta = 39.27 \text{ mrad}$

Again ne ste same parameters as in RHIC-6 at 5GeV/A, the maximum beam full Leight is

a, = 12.8 mm

and the maximum full width is

a_H = 13.2 to 16.0 mm

These numbers corresponds to about 5 standard deviations.

We show in a second table the same calculation for an initial rms energy gread of $E/E = 2 \times 10^{-4}$ as one can see the luminority lifetime is reduced down to 4/3 of the previous value and the allowable coyling injectance is down to 2/4 of the original value.

Sketch of a Regular Cell (Approximated) Take L = 15 m la = 1.5 m anadryole Length BP for Gold at 100 GeV/A Quadrysle Gradient = Bore Radius = 50.3 T/m 4 cm Field at Pole Tip = 2.0 T N = 160 half-cells 0 = 39.27 mrad, bending angle / half-cell Take B = 3.0 T Make 2 dipoles jer half a cell 2 le = MANNE ma 10.472 m that is lb = 5.236 m

	L	B	$\bar{\eta}$	~ ~ 1	200	t_{L}	δ_{T}	2/n	
	m	m	m	h-1	- n	hours		ohm	
	2.5	5	0.033	+-		-	136	0.77	
	5.	10	0.131			-	68	2.	
	7.5	15	0.295	***	<u> </u>		45	6.6	
	10.	20	0.525	.0036	.0020	1.5	34	13	
	12.5	25	0.82	.0028	.0013 / .0051	2./1.0	<i>27.</i> 3	21	
	4 5.	30	1.18	.0024	.0037	1.37	22.7	31	*
	17.5	35	1.61	.0020	.0060	1.0	19.5	42	
	20.	40	2.10	.0017	.0078	0.9	17.	56	
	22.5	45	2.66	.0014	.0092	0.8	15.	73	
	25.	50	3.28	.0011	.0120	0.64	13.6	89	
-									

0-E/E = 2 × 10-4

,	_	1
(6	/
1		

L	Ē	\bar{z}	Z _€ -1	7-1 B	t _L	\mathcal{Y}_{T}	Z/n	
	m	m	1-1	-1	hours		ahns	
	771		n		nows		0 41/4	
2.5	5	.033	-4	-	-	136	0.19	·
5	10	0.131	_		_	68	0.5	
7.5	15	0-295		-	-	45	1.7	
10	20			0.0027	0.4	34_	3.2	
12.5	25	1	1	• !	0.5/0.35		}	
 15	30		1	0.0055	0.4	22.7	7.7	*
17.5	35 40		İ	0.00 92	0,4	19.5	10.5	
 22.5	45			0.0154	0.36	15	18.2	
 25	50		1	0.0178/0.0229				
				,				